

Delivering an Effective, Resilient and Sustainable EU-China Food Safety Partnership

Case study 3-

the virtual laboratory

Professor Séamus Fanning, UCD-Centre for Food Safety School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, Ireland.

Professor Fengqin Li

Professor Bernard Chang

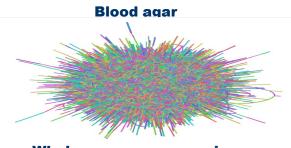
/ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Background to conventional bacteriological approaches *versus* big data -

 microbiological safety in food has traditionally been monitored by making use of *culturebased phenotypic methods;* detection characterisation & identification -*bed rock of diagnostic bacteriology*

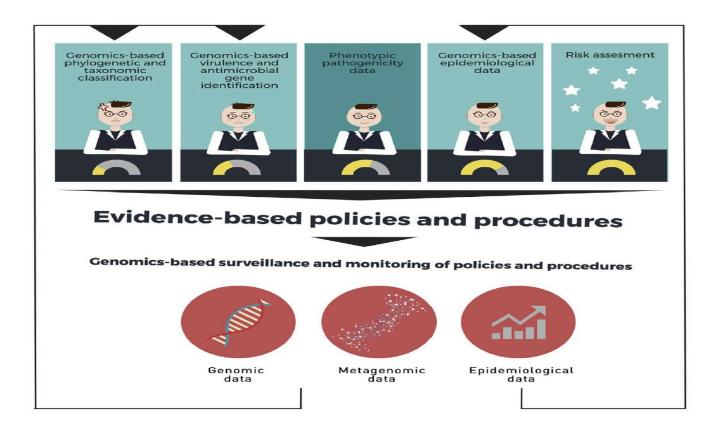
 bacterial pathogens of importance to public health are primarily studied at the genus/species level and with no regard to the context of the microbial communities from which they came -*microbiome*

high-throughput sequencing strategies have heralded a seismic


shift -study these bacteria of importance to human health and provided the opportunity to *re-write the risk assessment paradigm*

 big data-based analysis is now a reality upon which future food safety risk assessment will be based – Precision Food Safety

MacConkey agar



Whole genome sequencing

Precision food safety -

EU-China-Safe Final Meeting & Stakeholder Engagement, 23rd February, 2022

[Kovac et al., Trends Anal. Chem. (2017) 96: 52-61]

WGS-based analytics related to precision food safety -

Identify source of food-borne outbreaks quickly -

- Whole Genome Sequencing (WGS) surveillance of bacterial pathogens-tracking & tracing worldwide;
- Environmental monitoring;
- Elucidate features of importance to food safety (protection of the consumer/brand reputation) and food quality;

Detection of food fraud-

- Species identification;
- Products of designated origin (PDO);

Risk assessment – a working hypothesis!

- Using *big (genome) data* can we differentiate between a (regulatory controlled) pathogen and one that is a *true pathogen?*
- This is the shape of risk assessment into the future

Objectives-

Development of harmonised SOPs with project partners

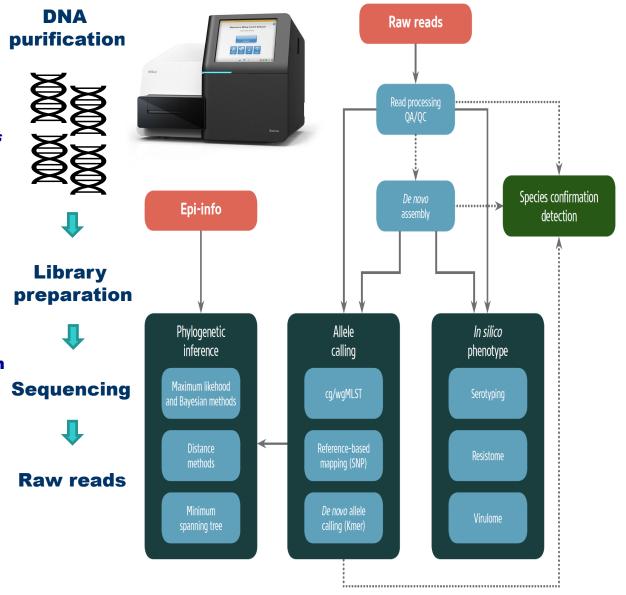
- Bacterial culturing
- DNA purification and quality assessment
- Sequencing protocol
- Whole Genome Sequencing (WGS)
- Evaluation of the performance exercise with 24 isolates
 - bioinformatics pipelines & SNP analysis
- □ SARS-CoV-2 collaboration

seafood

poultry &

pig meat

powder

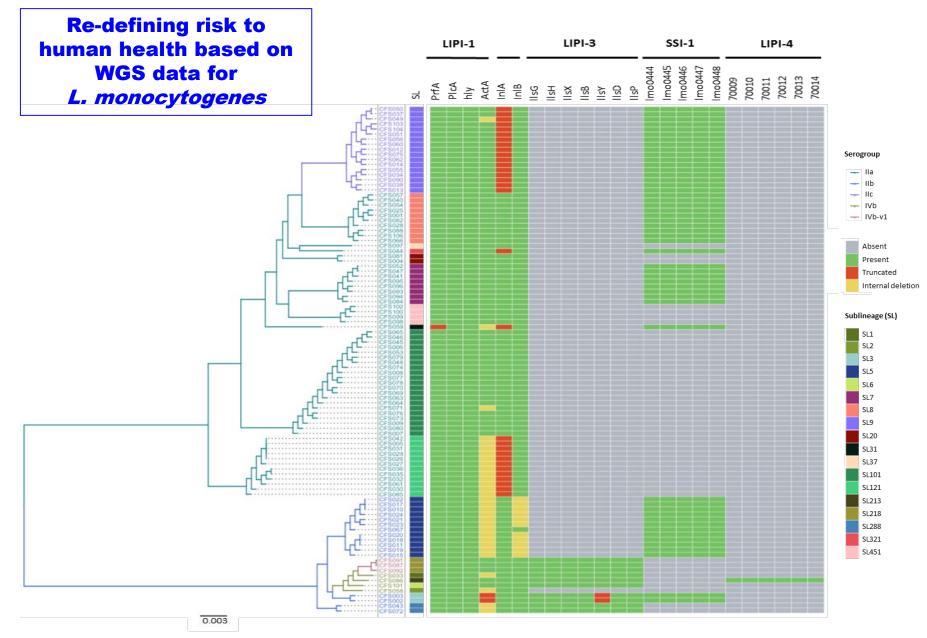

Listeria monocytogenes

Salmonella Typhimurium

Schematic representation of the WGS bioinformatics pipeline -

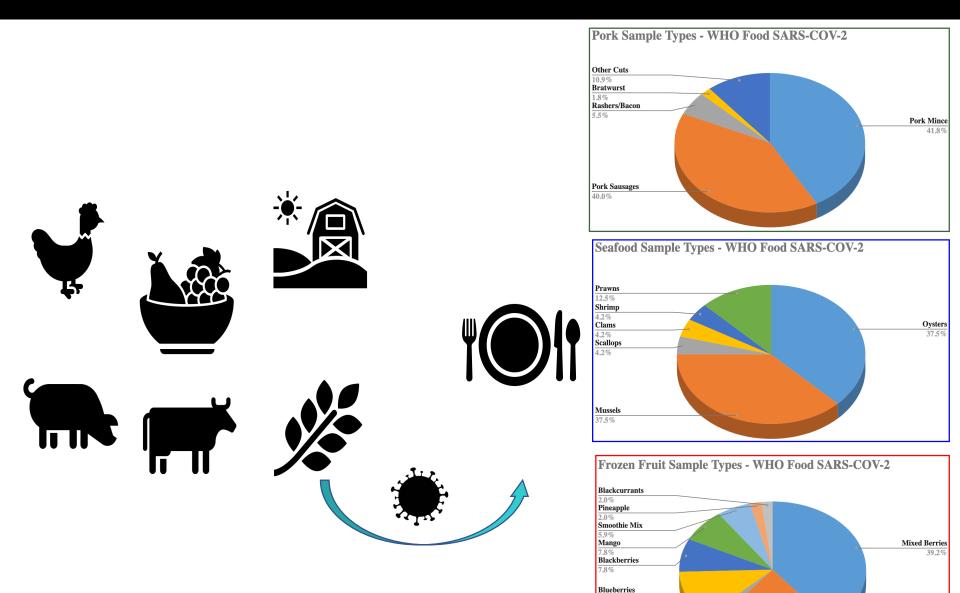
Cronobacter sakazakii

Identification of the test bacterium based on WGS analysis -


n isolate	Strain			I	MLST schen	Salmonella Predicted antigenic profile	0	H1 (fliC)	H2 (fijB)	Predicted serotype				
1	CFS3535	atpD(126)	fusA(73)	glnS(~116)	gltB(~111)	gyrB(~111)	infB(~112)	pps(~142)	N.A.	N.A.	N.A.	N.A.	N.A.	
2	CFS3536	atpD(5)	fusA(1)	glnS(3)	gltB(3)	gyrB(5)	infB(5)	pps(4)	N.A.	N.A.	N.A.	N.A.	N.A.	
3	CFS3537	atpD(126)	fusA(73)	glnS(~116)	gltB(~111)	gyrB(~111)	infB(~112)	pps(~142)	N.A.	N.A.	N.A.	N.A.	N.A.	
4	CFS3538	n.a.	n.a.	n.a.	n.a.	n.a. gyrB(5)	n.a. infB(5)	n.a.	n.a.	n.a. N.A. N.A. n.a.	n.a.	n.a.	n.a.	
5	CFS3539	atpD(5)	fusA(1)	glnS(3)	gltB(3)			pps(4)	N.A.		N.A.	N.A.	N.A.	
6	CFS3540	atpD(5)	fusA(1)	glnS(3)	gltB(3)	gyrB(5)	infB(5)	pps(4)	N.A.		N.A. n.a.	N.A.	N.A.	
7	CFS3541	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.			n.a.	n.a.	
8	CFS3542	atpD(5)	fusA(1)	gInS(3)	gltB(3)	gyrB(5)	infB(5)	pps(4)	N.A.	N.A.	N.A.	N.A.	N.A.	
9	CFS4391	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7	z10	e,n,z15	Mbandaka	
10	CFS4392	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7	z10	e,n,z15	Mbandaka	
11	CFS4393	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7	z10 z10 z10 z10 z10	e,n,z15 - e,n,z15	Mbandaka	
12	CFS4394	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:- N/A	0-7			N/A*	
13	CFS4395	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7			Mbandaka	
14	CFS4396	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7		e,n,z15	Mbandaka	
15	CFS4397	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7	z10	e,n,z15	Mbandaka	
16	CFS4398	aroC(15)	dnaN(70)	hemD(93)	hisD(78)	purE(113)	sucA(6)	thrA(68)	7:z10:e,n,z15	0-7	z10	e,n,z15	Mbandaka	
17	F2151	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
18	F2152	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
19	F2153	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
20	F2154	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
21	F2155	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
22	F2160	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
23	F2161	abcZ(7)	bglA(6)	cat(8)	dapE(8)	dat(6)	ldh(37)	lhkA(1)	N.A.	N.A.	N.A.	N.A.	N.A.	
24	F2166	abcZ(2)	bglA(1)	cat(11)	dapE(3)	dat(3)	ldh(1)	lhkA(7)	N.A.	N.A.	N.A.	N.A.	N.A.	

Inter-laboratory comparison of SNPs identified in the Salmonella genomes -

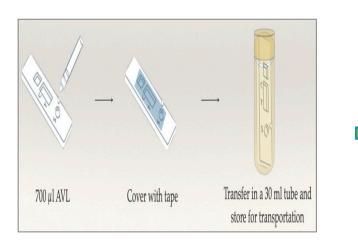
		CFS4391 CFS4392 CFS4393		393	CFS4394 CFS4395			CFS4396 CFS4397 CF			CFS4398	7			CFS4391 CFS439		CFS4393	CFS4394 CFS4395		S4395	395 CFS4396		FS4397	CFS43	98					
SNP	POS	REF	Lab1 La	њ2 І	Lab1 L	ab2	Lab1	Lab2	Lab1	Lab2	Lab1 Lab2	Lab1	Lab2	Lab1	Lab2	Lab1 Lab2	SNP	POS	REF	Lab1 Lab2	Lab1 Lab2	Lab1 Lab2	Lab1 Lab	2 Lab	1 Lab2	Lab1 La	b2 La	b1 Lab2	Lab1 L	.ab2
1	18,066	G		G		G T	G	G	A	<u>A</u>	G G T T	G	G	G	G	G G T T	79	2,091,879		<u> </u>	A A	<u></u>	C C C C	Â	Â	÷ f			Â	A T
2	53,481 60,997	A G	A		Ă	À	T A	Å	A G	A G	A A	A	Ă	T A	T A	A A	80 81	2,097,038 2,100,679	G	T T G G	GG	T T G G	тт	T G		G		s G	G	Ġ
4	115,779 161,671	C C				C A	A	A	c	c			C A	C	C A		82 83	2,198,236 2,213,761		A A G G	A A G G	A A G G	C C	A G	A G	A A G G			A G	A G
6	285,100	G	G	G	G	G	G	G	Ă	Ā	G G	G	G	G	G	G G	84	2,483,132	С	A A	A A	A A	c c	A	A	A 4		∧ ∧	А	A
7 8	300,602 355,852	T G		с		C T	C T	с т	A G	G	с с т т	C T	C T	с т	с т	с с т т	85 86	2,643,751 2,650,990	C A	C C G G	C C G G	C C G G		C G	C G	G		c c s g	C G	C G
9 10	358,951 412.907	G		A G		A G	A G	A G	G A	G	A A G G	A G	A G	A G	A G	A A G G	87 88	2,690,110 2,784,149		T T G G	TT	T T G G	C C G G	T G	T G	T I G G			т G	т G
11	457,570	С	т	т	т	т	т	т	с	ĉ	т т	т	т	т	т	т т	89	2,806,362	С	т т	A A T T	т т	с с	т	т	T I	r 1	г т	т	т
12 13	470,213 475,885	C C				Â	A	Å	C C	C C		Â	Â	A	A		90 91	2,818,367	C	ТТ		T T		C	C T				с т	C
14	569,100	G	т	т	т	т	т	т	G	G	т т	т	т	т	т	т т	92	2,835,627	A	T T	T T	T T	A A	Ť	т	τ i	r i i	T T	т	Ť
15 16	597,615 601,755	T A		A C		A C	A C	A C	A	A	A A C C	A C	A C	A C	A C		93 94	2,934,981 2,955,060	C T	с с т т	C C T T	C C T T	A A T T	C	C A				C A	C A
17	657,202	G	т	т		T	т	Ŧ	G G	G	т т т т	T	Ŧ	т	т	т т т т	95 96	2,961,135						A C	A C				A C	A C
19	658,208 688,006	G				-	Å	Å	G	G	A A	A	Å	Å	Å		96	2,961,372 2,963,858			A A	A A	с с	A	A			∧ ∧	А	A
20	728,571 755,600	A C		G A		G A	G	G	A	A		G	G	A	A		98 99	2,968,547 2,985,077	G	T T G G	T T G G	T T G G	G G A A	T G	T G	G G			T G	т G
22	762,795	G	G	G	G	G	G	G	А	A	G G	G	G	G	G	G G	100	3,020,528	с	с с	C C	C C	сс	с	С	G	. c	c c	С	c
23	765,995 809,822	T C		T C		T C	т с	т с	с т	с т	т т с с	T C	T C	т с	T C	т т с с	101 102	3,023,974 3,071,367		T T G G	T T G G	T T G G	G G A A	T G	T G	G G		тт ЗG	т G	т G
25	824,398	С	т	т	т	т	т	т	с	c	с с	т	т	С	с	с с	103	3,115,145	G	G G	G G	G G	A A	G	G	G	6 G	s G	G	G
26	853,127 856,685	C C		G		C G	C G	C G	С	С	C C G G	G	C G	C G	C G	C C G G	104 105	3,159,953 3,169,243		G G A A	G G A A	G G A A	G G	G	G	G G		a a	G A	G A
28 29	856,687	G		A G		A G	A G	A G	G C	G	A A G G	AG	A G	A G	A G	A A G G	106 107	3,184,078	C C			C C C	T T C C	C C					c c	c
30	856,688 859,262	G	G	G	G	G	G	G	с	c	GG	G	G	G	G	G G	108	3,184,545 3,253,643	G	G G	G G	G G	A A	G	G	G	6 0	s G	G	G
31	867,936 888,039	G		T C		T C	т	т с	G A	G	т т с с	Т С	T C	т с	т с	т т с с	109	3,331,624 3,339,129	C A	C C G G	C C G G	C C G G	T T A A	C G	C G	G			C G	C G
33	892,623	G	G	G	G	G	G	G	А	A	G G	G	G	G	G	G G	111	3,369,280	С	ТТ	ТТ	ТТ	с с	т	т	т т	r l 1	гт	т	т
34	898,828 899,456	G		G A		G A	G	G A	T A	A	G G A A	G	G	G A	G A	G G A A	112 113	3,412,631 3,412,976	G		A A	A A T T	G G	G	G T				G T	G
36	1,038,254	G	G	G	G	G	G	G	G	G	A A	G	G	A	А	A A	114 115	3,438,763	G	G G	GG	G G	A A	G	G	G	i (G G	G	G
	1,071,454 1,150,744	C G		G		C G	G	C G	A	Â	c c G G	C G	C G	C G	C G	C C G G	115	3,443,194 3,495,664		G G A A	G G A A	G G A A	G G	G		G G		G G	G A	G A
	1,150,979 1,211,578	C C		c c		c c	с с	Ţ	c c	c c	c c c c	C C	c c	c c	c c		117 118	3,504,595 3,599,911	A		T T G G	ТТ	A A T T	T	т				т	Ŧ
41	1,212,140	G	G	G	G	G	т	т	G	G	G G	G	G	G	G	G G	119	3,604,772	T	T T	тт	тт	G G	Ť		т т	r i		Ť	Ť
	1,213,019	A T		<u>^</u>		Â	A	A	A	A		Â	Å	A	A		120	3,612,933 3,678,390					G G C C	G	G			G G C A	G C	G
	1,246,433	G	G	G	G	G	G	G	A	A	G G	G	G	G	G T	G G	122	3,693,815	T	т т с с	ТТ	ТТ	G G	т	т	тт	r 1	гт	т	T C
	1,282,839 1,283,842	T G		T G		T G	T G	T G	A T	т	T T G G	T G	G	T G	G	T T G G	123 124	3,699,417 3,745,851	c			C C C	A A C C	C C					c 📕	Ā
	1,316,587 1,335,509	T G			-	T A	T A	T A	T G	T G	A A A A	Ă	Ă	A	A		125 126	3,772,930 3,828,301	G		A A A T	A A	G G A A	A	A T				A	A T
49	1,341,800	G	G	G 📘	с	С	G	G	G	G	G G	G	G	G	G	G G	127	3,828,304	G	G A	G A	G A	G G	Ĝ	А	G	i (5 A	Ĝ	
	1,343,538 1,352,874	C C		G		C G	C G	C G	A C	A C	C C G G	G	C G	C G	C G	C C G G	128 129	3,828,305 3,908,583		A G G G	A G G G	A G G G	A A A	G	G	A A G G		G G	G	G G
52	1,357,287	G	A 4	A	А	A	А	A	G	G	A A	A	A	А	A	A A	130	3,996,019	С	сс	C C	с с	тт	с	С	C 0	: c	c c	С	c
	1,366,637 1,380,448	G		G T		G T	G T	G T	c c	c	G G T T	G T	G T	G T	G T	G G T T	131 132	4,106,279 4,142,305	A C				A A T T	A	A C				A C	c
55	1,399,841 1,404,943	C G				C A	C A	C A	G	G		C A	C A	C A	C A		133 134	4,155,889 4,157,964	G	ТТ	G G T T	T T T T	G G	G	G T	GO			G T	G T
57	1,442,157	A	G	G	G	G	G	G	А	A	A A	G	G	A	A	A A	135	4,171,523	Т	ļτ τ	T T	T T	A A	Ť	т	iπ i	r i	T T	т	τ
	1,442,794 1,458,459	C G				C A	C A	C A	C G	C G	C C A A	A	A	C A	C A		136 137	4,238,953 4,242,808	A C	G G C C	G G C C	G G C C	A A C C	G	G C	G G			G C	G C
60	1,466,928	С	т	т	т	т	т	т	С	С	тт	т	тЦ	т	т	т т	138	4,270,395	G	т т	т т	ТТ	G G	т	т	ТТ	г	г т	т	Ŧ
	1,478,455 1,517,940	T A				A	T A	T A	T C	T C	G G A A	A	Ă	G	G	G G A A	139 140	4,299,493 4,350,610		с с т т	С С Т Т	C C T T		T					T T	T
63	1,520,989	A		A C	А	A C	A C	A C	A	Â	G G C C	A C	A C	G	G	G G C C	141 142	4,350,870 4,365,323	A	A G	A G A A	A G A A	A G	A	G		i 🗖	G	A	G A
65	1,656,936	С	т	т	т	т	т	т	С	ĉ	т т	Т	т	с т	т	т т	143	4,427,645	Т	A A	ТТ	т т	c c	т	A T	т 1	r 1	г т	A T	т
	1,684,588	C G		G		C G	C G	C G	T G	T G	C C G G	C G	C G	C A	C A		144 145	4,461,900	A	A A	A A		G G G	A T	Â				A T	2
68	1,769,143	С	A	A	А	A	А	А	c	c	с с	A	A	С	с	сс	146	4,515,817	С	A A	A A	A A	с с	A	А	A A		• •	А	<u>À</u>
	1,784,558 1,789,774	G		G		G G	G G	G G	A	A	G G G G	G	G G	G G	G G	G G G G	147 148	4,524,589 4,666,067		T T G G	T T G G	T T G G	T T G G	T		A A G G	5 A		T A	A
71	1,796,375	C G	с	C G	с	C G	C G	C G	т	T	C C G G	C G	C G	C G	C G	C C G G	149 150	4,669,817	A	G G	G G G G	G G G G	A A T T	AG	А	G	i 🖊	A A	A G	A G
73	1,820,289	A	т	т	т	т	т	т	A	Å	т т	Т	т	т	т	т т	151	4,677,262 4,697,571	T	A A	A A	A A	тт	A	А	AA		• •	А	A
	1,901,566	A		G		G G	G G	G G	A T	A T	G G G G	G	G G	G G	G G	G G G G	152 153	4,754,885	T				т т с с	C	C A				C A	C A
76	1,989,446	C	с	c	С	с	С	с	A	<u>^</u>	с с	l c	c	С	с	с с	154	4,770,544	A]т т	т т	ТТ	A A	т	т	ר ד	г т	г т	т	т
	2,026,980 2,050,044	C G		с	с т	C T	с т	с т	T G	T G	с с т т	C T	C T	с т	с т	с с т т	155 156	4,771,356 4,775,656		G G C C	G G C C	G G C C	T T G G	G	G	G G C G		s g c c	G C	G C
																		4,805,660		G G	G G	G G	G G	A	А	G		A A	А	А



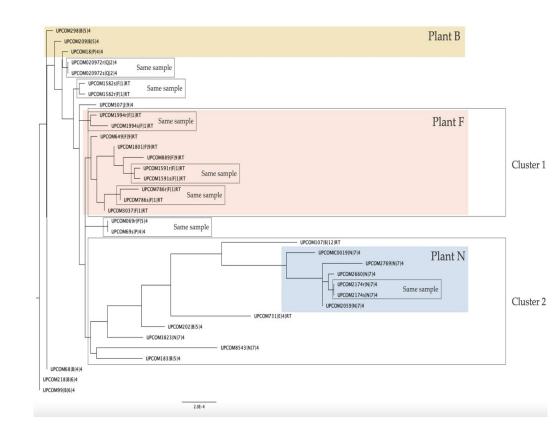
(

EU-China-Safe Final Meeting & Stakeholder Engagement, 23rd February, 2022

SARS-CoV-2 and food security -

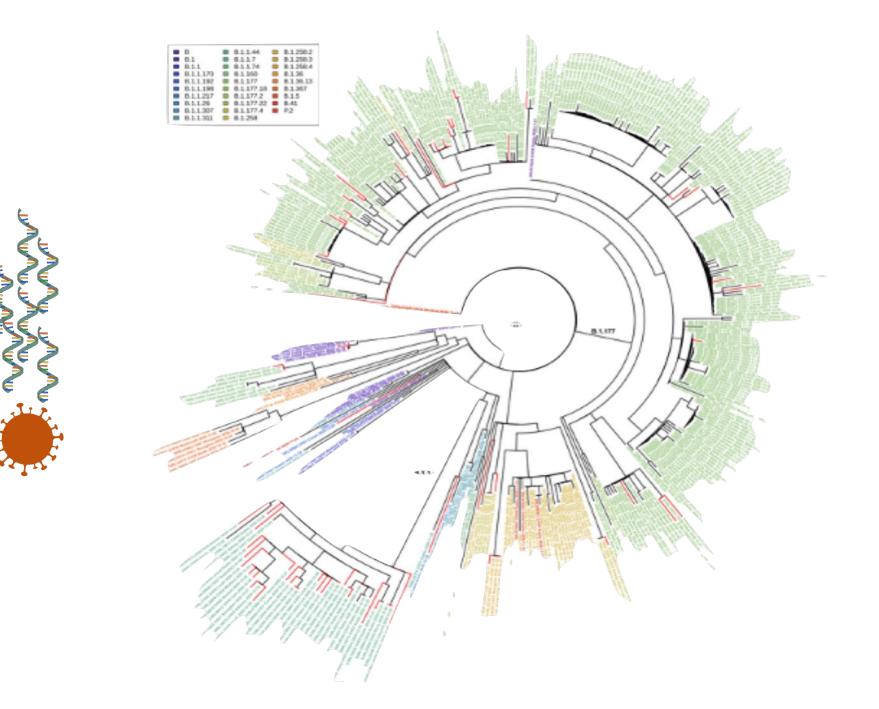

11.8% Strawberries 2.0%


EU-China-Safe Final Meeting & Stakeholder Engagement, 23rd February, 2022


Raspberries 21.6%

Extending the diagnostic value of spent rapid antigen detection assay kits in a meat processing plant (MPP) -

Spent rapid antigen detection test



SARS-CoV-2 identification

EU-China-Safe Final Meeting & Stakeholder Engagement, 23rd February, 2022

đ

Conclusions -

- a harmomonised protocol for sequencing bacteria and viruses of importance to food safety is established-
 - SOPs established and shared for WGS of bacteria and viruses;
 - validated protocols now in place;
 - harmonised interpretation of risk;
- **Established laboratory links between EU and China based teams**
 - working relationships in place with CFSA; HKPU;
 - collaorations will extend beyond the project lifetime though various joint events planned;
- risk assessment <u>a paradigm shift!</u>
 - Demonstrated potential to use big to assess risk to human health thereby defining a true pathogen?
 - future shape of risk assessment based on harmonized genome analysis

www.euchinasafe.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 727864 and from the Chinese Ministry of Science and Technology (MOST).

Disclaimer: The content of this presentation does not reflect the official opinion of the European Commission and/or the Chinese government. Responsibility for the information and views expressed therein lies entirely with the author(s).

